Degenerate elliptic equations with singular nonlinearities
نویسندگان
چکیده
The behavior of the “minimal branch” is investigated for quasilinear eigenvalue problems involving the p-Laplace operator, considered in a smooth bounded domain of RN , and compactness holds below a critical dimension N #. The nonlinearity f (u) lies in a very general class and the results we present are new even for p = 2. Due to the degeneracy of p-Laplace operator, for p = 2 it is crucial to define a suitable notion of semi-stability: the functional space we introduce in the paper seems to be the natural one and yields to a spectral theory for the linearized operator. For the case p = 2, compactness is also established along unstable branches satisfying suitable spectral information. The analysis is based on a blow-up argument and stronger assumptions on the nonlinearity f (u) are required. Mathematics subject classification 35B35 · 35B45 · 35J70 · 35J60
منابع مشابه
Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations
In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate or singular when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of suc...
متن کاملMultiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds
In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملBifurcation and Asymptotics for Elliptic Problems with Singular Nonlinearity
We report on some recent existence and uniqueness results for elliptic equations subject to Dirichlet boundary condition and involving a singular nonlinearity. We take into account the following types of problems: (i) singular problems with sublinear nonlinearity and two parameters; (ii) combined effects of asymptotically linear and singular nonlinearities in bifurcation problems; (iii) bifurca...
متن کاملSome remarks on singular solutions of nonlinear elliptic equations. I
We study strong maximum principles for singular solutions of nonlinear elliptic and degenerate elliptic equations of second order. An application is given on symmetry of positive solutions in a punctured ball using the method of moving planes. Mathematics Subject Classification (2000). 35J69, 58J05, 53C21, 35J60.
متن کاملNonlinear Neumann Boundary Conditions for Quasilinear Degenerate Elliptic Equations and Applications
We prove comparison results between viscosity sub and supersolutions of degenerate elliptic and parabolic equations associated to, possibly non-linear, Neumann boundary conditions. These results are obtained under more general assumptions on the equation (in particular the dependence in the gradient of the solution) and they allow applications to quasilinear, possibly singular, elliptic or para...
متن کامل